Visaulize(可视化)#
fastdeploy.vision.vis_detection#
- class fastdeploy.vision.vis_detection(im_data, det_result, labels=[], score_threshold=0.0, line_size=1, font_size=0.5)[source]#
Show the visualized results for detection models
- Parameters
im_data – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
det_result – the result produced by model
labels – (list of str) the visualized result will show the bounding box contain class label
score_threshold – (float) score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold
line_size – (float) line_size line size for bounding boxes
font_size – (float) font_size font size for text
- Returns
(numpy.ndarray) image with visualized results
fastdeploy.vision.vis_segmentation#
- class fastdeploy.vision.vis_segmentation(im_data, seg_result, weight=0.5)[source]#
Show the visualized results for segmentation models
- Parameters
im_data – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
seg_result – the result produced by model
weight – (float)transparent weight of visualized result image
- Returns
(numpy.ndarray) image with visualized results
fastdeploy.vision.vis_keypoint_detection#
- class fastdeploy.vision.vis_keypoint_detection(im_data, keypoint_det_result, conf_threshold=0.5)[source]#
Show the visualized results for keypoint detection models
- Parameters
im_data – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
keypoint_det_result – the result produced by model
conf_threshold – (float) conf_threshold threshold for result scores, the bounding box will not be shown if the score is less than conf_threshold
- Returns
(numpy.ndarray) image with visualized results
fastdeploy.vision.vis_face_detection#
- class fastdeploy.vision.vis_face_detection(im_data, face_det_result, line_size=1, font_size=0.5)[source]#
Show the visualized results for face detection models
- Parameters
im_data – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
face_det_result – the result produced by model
line_size – (float) line_size line size for bounding boxes
font_size – (float) font_size font size for text
- Returns
(numpy.ndarray) image with visualized results
fastdeploy.vision.vis_face_alignment#
- class fastdeploy.vision.vis_face_alignment(im_data, face_align_result, line_size=1)[source]#
Show the visualized results for face alignment models
- Parameters
im_data – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
face_align_result – the result produced by model
line_size – (float)line_size line size for circle point
- Returns
(numpy.ndarray) image with visualized results
fastdeploy.vision.vis_matting#
- class fastdeploy.vision.vis_matting(im_data, matting_result, transparent_background=False, transparent_threshold=0.99, remove_small_connected_area=False)[source]#
Show the visualized results for matting models
- Parameters
im_data – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
matting_result – the result produced by model
transparent_background – whether visulizing matting result with transparent background
transparent_threshold – since the alpha value in MattringResult is a float between [0, 1], transparent_threshold is used to filter background pixel
remove_small_connected_area – (bool) if remove_small_connected_area==True, the visualized result will not include the small connected areas
- Returns
(numpy.ndarray) image with visualized results