Source code for fastdeploy.vision.visualize

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import logging
from ... import c_lib_wrap as C
import cv2


[docs]def vis_detection(im_data, det_result, labels=[], score_threshold=0.0, line_size=1, font_size=0.5): """Show the visualized results for detection models :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param det_result: the result produced by model :param labels: (list of str) the visualized result will show the bounding box contain class label :param score_threshold: (float) score_threshold threshold for result scores, the bounding box will not be shown if the score is less than score_threshold :param line_size: (float) line_size line size for bounding boxes :param font_size: (float) font_size font size for text :return: (numpy.ndarray) image with visualized results """ return C.vision.vis_detection(im_data, det_result, labels, score_threshold, line_size, font_size)
[docs]def vis_keypoint_detection(im_data, keypoint_det_result, conf_threshold=0.5): """Show the visualized results for keypoint detection models :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param keypoint_det_result: the result produced by model :param conf_threshold: (float) conf_threshold threshold for result scores, the bounding box will not be shown if the score is less than conf_threshold :return: (numpy.ndarray) image with visualized results """ return C.vision.Visualize.vis_keypoint_detection( im_data, keypoint_det_result, conf_threshold)
[docs]def vis_face_detection(im_data, face_det_result, line_size=1, font_size=0.5): """Show the visualized results for face detection models :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param face_det_result: the result produced by model :param line_size: (float) line_size line size for bounding boxes :param font_size: (float) font_size font size for text :return: (numpy.ndarray) image with visualized results """ return C.vision.vis_face_detection(im_data, face_det_result, line_size, font_size)
[docs]def vis_face_alignment(im_data, face_align_result, line_size=1): """Show the visualized results for face alignment models :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param face_align_result: the result produced by model :param line_size: (float)line_size line size for circle point :return: (numpy.ndarray) image with visualized results """ return C.vision.vis_face_alignment(im_data, face_align_result, line_size)
[docs]def vis_segmentation(im_data, seg_result, weight=0.5): """Show the visualized results for segmentation models :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param seg_result: the result produced by model :param weight: (float)transparent weight of visualized result image :return: (numpy.ndarray) image with visualized results """ return C.vision.vis_segmentation(im_data, seg_result, weight)
def vis_matting_alpha(im_data, matting_result, remove_small_connected_area=False): logging.warning( "DEPRECATED: fastdeploy.vision.vis_matting_alpha is deprecated, please use fastdeploy.vision.vis_matting function instead." ) return C.vision.vis_matting(im_data, matting_result, remove_small_connected_area)
[docs]def vis_matting(im_data, matting_result, transparent_background=False, transparent_threshold=0.99, remove_small_connected_area=False): """Show the visualized results for matting models :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param matting_result: the result produced by model :param transparent_background: whether visulizing matting result with transparent background :param transparent_threshold: since the alpha value in MattringResult is a float between [0, 1], transparent_threshold is used to filter background pixel :param remove_small_connected_area: (bool) if remove_small_connected_area==True, the visualized result will not include the small connected areas :return: (numpy.ndarray) image with visualized results """ return C.vision.vis_matting(im_data, matting_result, transparent_background, transparent_threshold, remove_small_connected_area)
def swap_background_matting(im_data, background, result, remove_small_connected_area=False): logging.warning( "DEPRECATED: fastdeploy.vision.swap_background_matting is deprecated, please use fastdeploy.vision.swap_background function instead." ) assert isinstance( result, C.vision.MattingResult), "The result must be MattingResult type" return C.vision.Visualize.swap_background_matting( im_data, background, result, remove_small_connected_area) def swap_background_segmentation(im_data, background, background_label, result): logging.warning( "DEPRECATED: fastdeploy.vision.swap_background_segmentation is deprecated, please use fastdeploy.vision.swap_background function instead." ) assert isinstance( result, C.vision. SegmentationResult), "The result must be SegmentaitonResult type" return C.vision.Visualize.swap_background_segmentation( im_data, background, background_label, result) def swap_background(im_data, background, result, remove_small_connected_area=False, background_label=0): """Swap the image background with MattingResult or SegmentationResult :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param background: (numpy.ndarray)The background image data, 3-D array with layout HWC, BGR format :param result: The result produced by model, MattingResult or SegmentationResult :param remove_small_connected_area: (bool) If remove_small_connected_area==True, the visualized result will not include the small connected areas :param background_label: (int)The background label number in SegmentationResult :return: (numpy.ndarray) image with visualized results """ if isinstance(result, C.vision.MattingResult): return C.vision.swap_background(im_data, background, result, remove_small_connected_area) elif isinstance(result, C.vision.SegmentationResult): return C.vision.swap_background(im_data, background, result, background_label) else: raise Exception( "Only support result type of MattingResult or SegmentationResult, but now the data type is {}.". format(type(result)))
[docs]def vis_ppocr(im_data, det_result): """Show the visualized results for ocr models :param im_data: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param det_result: the result produced by model :return: (numpy.ndarray) image with visualized results """ return C.vision.vis_ppocr(im_data, det_result)
def vis_mot(im_data, mot_result, score_threshold=0.0, records=None): return C.vision.vis_mot(im_data, mot_result, score_threshold, records) def vis_headpose(im_data, headpose_result, size=50, line_size=1): return C.vision.vis_headpose(im_data, headpose_result, size, line_size)