Face Alignment(人脸对齐)#
fastdeploy.vision.facealign.PFLD#
- class fastdeploy.vision.facealign.PFLD(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
Load a face alignment model exported by PFLD.
- Parameters
model_file – (str)Path of model file, e.g pfld/pfld-106-v3.onnx
params_file – (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- predict(input_image)[source]#
Detect an input image landmarks
- Parameters
im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- Returns
FaceAlignmentResult
- property size#
Returns the preprocess image size, default (112, 112)
fastdeploy.vision.facealign.FaceLandmark1000#
- class fastdeploy.vision.facealign.FaceLandmark1000(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
Load a face alignment model exported by FaceLandmark1000.
- Parameters
model_file – (str)Path of model file, e.g ./FaceLandmark1000.onnx
params_file – (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- predict(input_image)[source]#
Detect an input image landmarks
- Parameters
im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- Returns
FaceAlignmentResult
- property size#
Returns the preprocess image size, default (128, 128)
fastdeploy.vision.facealign.PIPNet#
- class fastdeploy.vision.facealign.PIPNet(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
Load a face alignment model exported by PIPNet.
- Parameters
model_file – (str)Path of model file, e.g ./PIPNet.onnx
params_file – (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- property mean_vals#
Returns the mean value of normlization, default mean_vals = [0.485f, 0.456f, 0.406f];
- property num_landmarks#
Returns the number of landmarks
- predict(input_image)[source]#
Detect an input image landmarks
- Parameters
im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
- Returns
FaceAlignmentResult
- property size#
Returns the preprocess image size, default (256, 256)
- property std_vals#
Returns the std value of normlization, default std_vals = [0.229f, 0.224f, 0.225f];