Face Alignment(人脸对齐)#
fastdeploy.vision.facealign.PFLD#
- class fastdeploy.vision.facealign.PFLD(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
- Load a face alignment model exported by PFLD. - Parameters
- model_file – (str)Path of model file, e.g pfld/pfld-106-v3.onnx 
- params_file – (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string 
- runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU 
- model_format – (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX 
 
 - get_profile_time()#
- Get profile time of Runtime after the profile process is done. 
 - predict(input_image)[source]#
- Detect an input image landmarks - Parameters
- im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format 
- Returns
- FaceAlignmentResult 
 
 - property size#
- Returns the preprocess image size, default (112, 112) 
 
fastdeploy.vision.facealign.FaceLandmark1000#
- class fastdeploy.vision.facealign.FaceLandmark1000(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
- Load a face alignment model exported by FaceLandmark1000. - Parameters
- model_file – (str)Path of model file, e.g ./FaceLandmark1000.onnx 
- params_file – (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string 
- runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU 
- model_format – (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX 
 
 - get_profile_time()#
- Get profile time of Runtime after the profile process is done. 
 - predict(input_image)[source]#
- Detect an input image landmarks - Parameters
- im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format 
- Returns
- FaceAlignmentResult 
 
 - property size#
- Returns the preprocess image size, default (128, 128) 
 
fastdeploy.vision.facealign.PIPNet#
- class fastdeploy.vision.facealign.PIPNet(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
- Load a face alignment model exported by PIPNet. - Parameters
- model_file – (str)Path of model file, e.g ./PIPNet.onnx 
- params_file – (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string 
- runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU 
- model_format – (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX 
 
 - get_profile_time()#
- Get profile time of Runtime after the profile process is done. 
 - property mean_vals#
- Returns the mean value of normlization, default mean_vals = [0.485f, 0.456f, 0.406f]; 
 - property num_landmarks#
- Returns the number of landmarks 
 - predict(input_image)[source]#
- Detect an input image landmarks - Parameters
- im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format 
- Returns
- FaceAlignmentResult 
 
 - property size#
- Returns the preprocess image size, default (256, 256) 
 - property std_vals#
- Returns the std value of normlization, default std_vals = [0.229f, 0.224f, 0.225f];