Face Detection(人脸检测)#
fastdeploy.vision.facedet.RetinaFace#
- class fastdeploy.vision.facedet.RetinaFace(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
Load a RetinaFace model exported by RetinaFace.
- Parameters
model_file – (str)Path of model file, e.g ./retinaface.onnx
params_file – (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model
- property downsample_strides#
Argument for image postprocessing step, downsample strides (namely, steps) for RetinaFace to generate anchors, will take (8,16,32) as default values
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- property landmarks_per_face#
Argument for image postprocessing step, landmarks_per_face, default 5 in RetinaFace
- property min_sizes#
Argument for image postprocessing step, min sizes, width and height for each anchor, default min_sizes = [[16, 32], [64, 128], [256, 512]]
- predict(input_image, conf_threshold=0.7, nms_iou_threshold=0.3)[source]#
Detect the location and key points of human faces from an input image
- Parameters
input_image – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
conf_threshold – confidence threashold for postprocessing, default is 0.7
nms_iou_threshold – iou threashold for NMS, default is 0.3
- Returns
FaceDetectionResult
- property size#
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
- property variance#
Argument for image postprocessing step, variance in RetinaFace’s prior-box(anchor) generate process, default (0.1, 0.2)
fastdeploy.vision.facedet.SCRFD#
- class fastdeploy.vision.facedet.SCRFD(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
Load a SCRFD model exported by SCRFD.
- Parameters
model_file – (str)Path of model file, e.g ./scrfd.onnx
params_file – (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model
- property downsample_strides#
Argument for image postprocessing step, downsample strides (namely, steps) for SCRFD to generate anchors, will take (8,16,32) as default values
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- property landmarks_per_face#
Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD
- property max_nms#
Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000
- property num_anchors#
Argument for image postprocessing step, anchor number of each stride, default 2
- predict(input_image, conf_threshold=0.7, nms_iou_threshold=0.3)[source]#
Detect the location and key points of human faces from an input image
- Parameters
input_image – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
conf_threshold – confidence threashold for postprocessing, default is 0.7
nms_iou_threshold – iou threashold for NMS, default is 0.3
- Returns
FaceDetectionResult
- property size#
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640)
- property use_kps#
Argument for image postprocessing step, the outputs of onnx file with key points features or not, default true
fastdeploy.vision.facedet.UltraFace#
- class fastdeploy.vision.facedet.UltraFace(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
Load a UltraFace model exported by UltraFace.
- Parameters
model_file – (str)Path of model file, e.g ./ultraface.onnx
params_file – (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- predict(input_image, conf_threshold=0.7, nms_iou_threshold=0.3)[source]#
Detect the location and key points of human faces from an input image
- Parameters
input_image – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
conf_threshold – confidence threashold for postprocessing, default is 0.7
nms_iou_threshold – iou threashold for NMS, default is 0.3
- Returns
FaceDetectionResult
- property size#
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (320, 240)
fastdeploy.vision.facedet.YOLOv5Face#
- class fastdeploy.vision.facedet.YOLOv5Face(model_file, params_file='', runtime_option=None, model_format=<ModelFormat.ONNX: 2>)[source]#
Load a YOLOv5Face model exported by YOLOv5Face.
- Parameters
model_file – (str)Path of model file, e.g ./yolov5face.onnx
params_file – (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- property landmarks_per_face#
Argument for image postprocessing step, landmarks_per_face, default 5 in YOLOv5Face
- predict(input_image, conf_threshold=0.25, nms_iou_threshold=0.5)[source]#
Detect the location and key points of human faces from an input image
- Parameters
input_image – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
conf_threshold – confidence threashold for postprocessing, default is 0.25
nms_iou_threshold – iou threashold for NMS, default is 0.5
- Returns
FaceDetectionResult
- property size#
Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default size = [640,640]