Source code for fastdeploy.vision.facedet.contrib.scrfd

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C


[docs]class SCRFD(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.ONNX): """Load a SCRFD model exported by SCRFD. :param model_file: (str)Path of model file, e.g ./scrfd.onnx :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ # 调用基函数进行backend_option的初始化 # 初始化后的option保存在self._runtime_option super(SCRFD, self).__init__(runtime_option) self._model = C.vision.facedet.SCRFD( model_file, params_file, self._runtime_option, model_format) # 通过self.initialized判断整个模型的初始化是否成功 assert self.initialized, "SCRFD initialize failed."
[docs] def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3): """Detect the location and key points of human faces from an input image :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param conf_threshold: confidence threashold for postprocessing, default is 0.7 :param nms_iou_threshold: iou threashold for NMS, default is 0.3 :return: FaceDetectionResult """ return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
[docs] def disable_normalize(self): """ This function will disable normalize in preprocessing step. """ self._model.disable_normalize()
[docs] def disable_permute(self): """ This function will disable hwc2chw in preprocessing step. """ self._model.disable_permute()
# 一些跟SCRFD模型有关的属性封装 # 多数是预处理相关,可通过修改如model.size = [640, 640]改变预处理时resize的大小(前提是模型支持) @property def size(self): """ Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640) """ return self._model.size @property def padding_value(self): # padding value, size should be the same as channels return self._model.padding_value @property def is_no_pad(self): # while is_mini_pad = false and is_no_pad = true, will resize the image to the set size return self._model.is_no_pad @property def is_mini_pad(self): # only pad to the minimum rectange which height and width is times of stride return self._model.is_mini_pad @property def is_scale_up(self): # if is_scale_up is false, the input image only can be zoom out, the maximum resize scale cannot exceed 1.0 return self._model.is_scale_up @property def stride(self): # padding stride, for is_mini_pad return self._model.stride @property def downsample_strides(self): """ Argument for image postprocessing step, downsample strides (namely, steps) for SCRFD to generate anchors, will take (8,16,32) as default values """ return self._model.downsample_strides @property def landmarks_per_face(self): """ Argument for image postprocessing step, landmarks_per_face, default 5 in SCRFD """ return self._model.landmarks_per_face @property def use_kps(self): """ Argument for image postprocessing step, the outputs of onnx file with key points features or not, default true """ return self._model.use_kps @property def max_nms(self): """ Argument for image postprocessing step, the upperbond number of boxes processed by nms, default 30000 """ return self._model.max_nms @property def num_anchors(self): """ Argument for image postprocessing step, anchor number of each stride, default 2 """ return self._model.num_anchors @size.setter def size(self, wh): assert isinstance(wh, (list, tuple)),\ "The value to set `size` must be type of tuple or list." assert len(wh) == 2,\ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( len(wh)) self._model.size = wh @padding_value.setter def padding_value(self, value): assert isinstance( value, list), "The value to set `padding_value` must be type of list." self._model.padding_value = value @is_no_pad.setter def is_no_pad(self, value): assert isinstance( value, bool), "The value to set `is_no_pad` must be type of bool." self._model.is_no_pad = value @is_mini_pad.setter def is_mini_pad(self, value): assert isinstance( value, bool), "The value to set `is_mini_pad` must be type of bool." self._model.is_mini_pad = value @is_scale_up.setter def is_scale_up(self, value): assert isinstance( value, bool), "The value to set `is_scale_up` must be type of bool." self._model.is_scale_up = value @stride.setter def stride(self, value): assert isinstance( value, int), "The value to set `stride` must be type of int." self._model.stride = value @downsample_strides.setter def downsample_strides(self, value): assert isinstance( value, list), "The value to set `downsample_strides` must be type of list." self._model.downsample_strides = value @landmarks_per_face.setter def landmarks_per_face(self, value): assert isinstance( value, int), "The value to set `landmarks_per_face` must be type of int." self._model.landmarks_per_face = value @use_kps.setter def use_kps(self, value): assert isinstance( value, bool), "The value to set `use_kps` must be type of bool." self._model.use_kps = value @max_nms.setter def max_nms(self, value): assert isinstance( value, int), "The value to set `max_nms` must be type of int." self._model.max_nms = value @num_anchors.setter def num_anchors(self, value): assert isinstance( value, int), "The value to set `num_anchors` must be type of int." self._model.num_anchors = value