Keypoint Detection(关键点检测)#
fastdeploy.vision.keypointdetection.PPTinyPose#
- class fastdeploy.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=<ModelFormat.PADDLE: 1>)[source]#
load a PPTinyPose model exported by PaddleDetection.
- Parameters
model_file – (str)Path of model file, e.g pptinypose/model.pdmodel
params_file – (str)Path of parameters file, e.g pptinypose/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
config_file – (str)Path of configuration file for deployment, e.g pptinypose/infer_cfg.yml
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU
model_format – (fastdeploy.ModelForamt)Model format of the loaded model
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
- predict(input_image, detection_result=None)[source]#
Detect keypoints in an input image
- Parameters
im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
detection_result – (DetectionResult)Pre-detected boxes result, default is None
- Returns
KeyPointDetectionResult
- property use_dark#
Atrribute of PPTinyPose model. Stating whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is True
- Returns
value of use_dark(bool)