Keypoint Detection(关键点检测)#
fastdeploy.vision.keypointdetection.PPTinyPose#
- class fastdeploy.vision.keypointdetection.PPTinyPose(model_file, params_file, config_file, runtime_option=None, model_format=<ModelFormat.PADDLE: 1>)[source]#
- load a PPTinyPose model exported by PaddleDetection. - Parameters
- model_file – (str)Path of model file, e.g pptinypose/model.pdmodel 
- params_file – (str)Path of parameters file, e.g pptinypose/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string 
- config_file – (str)Path of configuration file for deployment, e.g pptinypose/infer_cfg.yml 
- runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU 
- model_format – (fastdeploy.ModelForamt)Model format of the loaded model 
 
 - get_profile_time()#
- Get profile time of Runtime after the profile process is done. 
 - predict(input_image, detection_result=None)[source]#
- Detect keypoints in an input image - Parameters
- im – (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format 
- detection_result – (DetectionResult)Pre-detected boxes result, default is None 
 
- Returns
- KeyPointDetectionResult 
 
 - property use_dark#
- Atrribute of PPTinyPose model. Stating whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is True - Returns
- value of use_dark(bool)