Source code for fastdeploy.vision.keypointdetection.pptinypose

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C


[docs]class PPTinyPose(FastDeployModel): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """load a PPTinyPose model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g pptinypose/model.pdmodel :param params_file: (str)Path of parameters file, e.g pptinypose/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g pptinypose/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPTinyPose, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PPTinyPose model only support model format of ModelFormat.Paddle now." self._model = C.vision.keypointdetection.PPTinyPose( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PPTinyPose model initialize failed."
[docs] def predict(self, input_image, detection_result=None): """Detect keypoints in an input image :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param detection_result: (DetectionResult)Pre-detected boxes result, default is None :return: KeyPointDetectionResult """ assert input_image is not None, "The input image data is None." if detection_result: return self._model.predict(input_image, detection_result) else: return self._model.predict(input_image)
@property def use_dark(self): """Atrribute of PPTinyPose model. Stating whether using Distribution-Aware Coordinate Representation for Human Pose Estimation(DARK for short) in postprocess, default is True :return: value of use_dark(bool) """ return self._model.use_dark @use_dark.setter def use_dark(self, value): """Set attribute use_dark of PPTinyPose model. :param value: (bool)The value to set use_dark """ assert isinstance( value, bool), "The value to set `use_dark` must be type of bool." self._model.use_dark = value
[docs] def disable_normalize(self): """ This function will disable normalize in preprocessing step. """ self._model.disable_normalize()
[docs] def disable_permute(self): """ This function will disable hwc2chw in preprocessing step. """ self._model.disable_permute()