OCR(文字识别)#
fastdeploy.vision.ocr.DBDetectorPreprocessor#
- class fastdeploy.vision.ocr.DBDetectorPreprocessor[source]#
Create a preprocessor for DBDetectorModel
- property max_side_len#
Get max_side_len value.
- run(input_ims)#
Process input image
- Param
input_ims: (list of numpy.ndarray) The input images
- Returns
list of FDTensor
- set_normalize(mean, std, is_scale)[source]#
- Set preprocess normalize parameters, please call this API to
customize the normalize parameters, otherwise it will use the default normalize parameters.
- Param
mean: (list of float) mean values
- Param
std: (list of float) std values
- Param
is_scale: (boolean) whether to scale
- use_cuda(enable_cv_cuda=False, gpu_id=-1)#
Use CUDA processors
- Param
enable_cv_cuda: Ture: use CV-CUDA, False: use CUDA only
- Param
gpu_id: GPU device id
fastdeploy.vision.ocr.DBDetectorPostprocessor#
- class fastdeploy.vision.ocr.DBDetectorPostprocessor[source]#
Create a postprocessor for DBDetectorModel
- property det_db_box_thresh#
Return the det_db_box_thresh of DBDetectorPostprocessor
- property det_db_score_mode#
Return the det_db_score_mode of DBDetectorPostprocessor
- property det_db_thresh#
Return the det_db_thresh of DBDetectorPostprocessor
- property det_db_unclip_ratio#
Return the det_db_unclip_ratio of DBDetectorPostprocessor
- run(runtime_results, batch_det_img_info)[source]#
Postprocess the runtime results for DBDetectorModel
- Param
runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime
- Param
batch_det_img_info: (list of std::array<int, 4>)The output of det_preprocessor
- Returns
list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
- property use_dilation#
Return the use_dilation of DBDetectorPostprocessor
fastdeploy.vision.ocr.DBDetector#
- class fastdeploy.vision.ocr.DBDetector(model_file='', params_file='', runtime_option=None, model_format=<ModelFormat.PADDLE: 1>)[source]#
Load OCR detection model provided by PaddleOCR.
- Parameters
model_file – (str)Path of model file, e.g ./ch_PP-OCRv3_det_infer/model.pdmodel.
params_file – (str)Path of parameter file, e.g ./ch_PP-OCRv3_det_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU.
model_format – (fastdeploy.ModelForamt)Model format of the loaded model.
- batch_predict(images)[source]#
Predict a batch of input image :param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return: batch_boxes
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
fastdeploy.vision.ocr.ClassifierPreprocessor#
- class fastdeploy.vision.ocr.ClassifierPreprocessor[source]#
Create a preprocessor for ClassifierModel
- run(input_ims)#
Process input image
- Param
input_ims: (list of numpy.ndarray) The input images
- Returns
list of FDTensor
- set_normalize(mean, std, is_scale)[source]#
- Set preprocess normalize parameters, please call this API to
customize the normalize parameters, otherwise it will use the default normalize parameters.
- Param
mean: (list of float) mean values
- Param
std: (list of float) std values
- Param
is_scale: (boolean) whether to scale
- use_cuda(enable_cv_cuda=False, gpu_id=-1)#
Use CUDA processors
- Param
enable_cv_cuda: Ture: use CV-CUDA, False: use CUDA only
- Param
gpu_id: GPU device id
fastdeploy.vision.ocr.ClassifierPostprocessor#
- class fastdeploy.vision.ocr.ClassifierPostprocessor[source]#
Create a postprocessor for ClassifierModel
- property cls_thresh#
Return the cls_thresh of ClassifierPostprocessor
- run(runtime_results)[source]#
Postprocess the runtime results for ClassifierModel :param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime :return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
fastdeploy.vision.ocr.Classifier#
- class fastdeploy.vision.ocr.Classifier(model_file='', params_file='', runtime_option=None, model_format=<ModelFormat.PADDLE: 1>)[source]#
Load OCR classification model provided by PaddleOCR.
- Parameters
model_file – (str)Path of model file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdmodel.
params_file – (str)Path of parameter file, e.g ./ch_ppocr_mobile_v2.0_cls_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU.
model_format – (fastdeploy.ModelForamt)Model format of the loaded model.
- batch_predict(images)[source]#
Predict a batch of input image :param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return: list of cls_label, list of cls_score
- clone()[source]#
Clone OCR classification model object :return: a new OCR classification model object
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
fastdeploy.vision.ocr.RecognizerPreprocessor#
- class fastdeploy.vision.ocr.RecognizerPreprocessor[source]#
Create a preprocessor for RecognizerModel
- run(input_ims)#
Process input image
- Param
input_ims: (list of numpy.ndarray) The input images
- Returns
list of FDTensor
- set_normalize(mean, std, is_scale)[source]#
- Set preprocess normalize parameters, please call this API to
customize the normalize parameters, otherwise it will use the default normalize parameters.
- Param
mean: (list of float) mean values
- Param
std: (list of float) std values
- Param
is_scale: (boolean) whether to scale
- use_cuda(enable_cv_cuda=False, gpu_id=-1)#
Use CUDA processors
- Param
enable_cv_cuda: Ture: use CV-CUDA, False: use CUDA only
- Param
gpu_id: GPU device id
fastdeploy.vision.ocr.RecognizerPostprocessor#
- class fastdeploy.vision.ocr.RecognizerPostprocessor(label_path)[source]#
Create a postprocessor for RecognizerModel :param label_path: (str)Path of label file
- run(runtime_results)[source]#
Postprocess the runtime results for RecognizerModel :param: runtime_results: (list of FDTensor or list of pyArray)The output FDTensor results from runtime :return: list of Result(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
fastdeploy.vision.ocr.Recognizer#
- class fastdeploy.vision.ocr.Recognizer(model_file='', params_file='', label_path='', runtime_option=None, model_format=<ModelFormat.PADDLE: 1>)[source]#
Load OCR recognition model provided by PaddleOCR
- Parameters
model_file – (str)Path of model file, e.g ./ch_PP-OCRv3_rec_infer/model.pdmodel.
params_file – (str)Path of parameter file, e.g ./ch_PP-OCRv3_rec_infer/model.pdiparams, if the model format is ONNX, this parameter will be ignored.
label_path – (str)Path of label file used by OCR recognition model. e.g ./ppocr_keys_v1.txt
runtime_option – (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it’s None, will use the default backend on CPU.
model_format – (fastdeploy.ModelForamt)Model format of the loaded model.
- batch_predict(images)[source]#
Predict a batch of input image :param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return: list of rec_text, list of rec_score
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
fastdeploy.vision.ocr.PPOCRv2#
- class fastdeploy.vision.ocr.PPOCRv2(det_model=None, cls_model=None, rec_model=None)[source]#
Consruct a pipeline with text detector, direction classifier and text recognizer models
- Parameters
det_model – (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
cls_model – (FastDeployModel) The classification model object created by fastdeploy.vision.ocr.Classifier.
rec_model – (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
- batch_predict(images)[source]#
Predict a batch of input image :param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return: OCRBatchResult
- get_profile_time()#
Get profile time of Runtime after the profile process is done.
fastdeploy.vision.ocr.PPOCRv3#
- class fastdeploy.vision.ocr.PPOCRv3(det_model=None, cls_model=None, rec_model=None)[source]#
Consruct a pipeline with text detector, direction classifier and text recognizer models
- Parameters
det_model – (FastDeployModel) The detection model object created by fastdeploy.vision.ocr.DBDetector.
cls_model – (FastDeployModel) The classification model object created by fastdeploy.vision.ocr.Classifier.
rec_model – (FastDeployModel) The recognition model object created by fastdeploy.vision.ocr.Recognizer.
- batch_predict(images)[source]#
Predict a batch of input image :param images: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return: OCRBatchResult
- get_profile_time()#
Get profile time of Runtime after the profile process is done.