Source code for fastdeploy.vision.facedet.contrib.retinaface

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C


[docs]class RetinaFace(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.ONNX): """Load a RetinaFace model exported by RetinaFace. :param model_file: (str)Path of model file, e.g ./retinaface.onnx :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ # 调用基函数进行backend_option的初始化 # 初始化后的option保存在self._runtime_option super(RetinaFace, self).__init__(runtime_option) self._model = C.vision.facedet.RetinaFace( model_file, params_file, self._runtime_option, model_format) # 通过self.initialized判断整个模型的初始化是否成功 assert self.initialized, "RetinaFace initialize failed."
[docs] def predict(self, input_image, conf_threshold=0.7, nms_iou_threshold=0.3): """Detect the location and key points of human faces from an input image :param input_image: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :param conf_threshold: confidence threashold for postprocessing, default is 0.7 :param nms_iou_threshold: iou threashold for NMS, default is 0.3 :return: FaceDetectionResult """ return self._model.predict(input_image, conf_threshold, nms_iou_threshold)
# 一些跟模型有关的属性封装 # 多数是预处理相关,可通过修改如model.size = [640, 480]改变预处理时resize的大小(前提是模型支持) @property def size(self): """ Argument for image preprocessing step, the preprocess image size, tuple of (width, height), default (640, 640) """ return self._model.size @property def variance(self): """ Argument for image postprocessing step, variance in RetinaFace's prior-box(anchor) generate process, default (0.1, 0.2) """ return self._model.variance @property def downsample_strides(self): """ Argument for image postprocessing step, downsample strides (namely, steps) for RetinaFace to generate anchors, will take (8,16,32) as default values """ return self._model.downsample_strides @property def min_sizes(self): """ Argument for image postprocessing step, min sizes, width and height for each anchor, default min_sizes = [[16, 32], [64, 128], [256, 512]] """ return self._model.min_sizes @property def landmarks_per_face(self): """ Argument for image postprocessing step, landmarks_per_face, default 5 in RetinaFace """ return self._model.landmarks_per_face @size.setter def size(self, wh): assert isinstance(wh, (list, tuple)),\ "The value to set `size` must be type of tuple or list." assert len(wh) == 2,\ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( len(wh)) self._model.size = wh @variance.setter def variance(self, value): assert isinstance(v, (list, tuple)),\ "The value to set `variance` must be type of tuple or list." assert len(value) == 2,\ "The value to set `variance` must contatins 2 elements".format( len(value)) self._model.variance = value @downsample_strides.setter def downsample_strides(self, value): assert isinstance( value, list), "The value to set `downsample_strides` must be type of list." self._model.downsample_strides = value @min_sizes.setter def min_sizes(self, value): assert isinstance( value, list), "The value to set `min_sizes` must be type of list." self._model.min_sizes = value @landmarks_per_face.setter def landmarks_per_face(self, value): assert isinstance( value, int), "The value to set `landmarks_per_face` must be type of int." self._model.landmarks_per_face = value