Source code for fastdeploy.vision.headpose.contrib.fsanet

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C


[docs]class FSANet(FastDeployModel): def __init__(self, model_file, params_file="", runtime_option=None, model_format=ModelFormat.ONNX): """Load a headpose model exported by FSANet. :param model_file: (str)Path of model file, e.g fsanet/fsanet-var.onnx :param params_file: (str)Path of parameters file, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model, default is ONNX """ super(FSANet, self).__init__(runtime_option) assert model_format == ModelFormat.ONNX, "FSANet only support model format of ModelFormat.ONNX now." self._model = C.vision.headpose.FSANet( model_file, params_file, self._runtime_option, model_format) assert self.initialized, "FSANet initialize failed."
[docs] def predict(self, input_image): """Predict an input image headpose :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: HeadPoseResult """ return self._model.predict(input_image)
@property def size(self): """ Returns the preprocess image size, default (64, 64) """ return self._model.size @size.setter def size(self, wh): """ Set the preprocess image size, default (64, 64) """ assert isinstance(wh, (list, tuple)),\ "The value to set `size` must be type of tuple or list." assert len(wh) == 2,\ "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( len(wh)) self._model.size = wh