Source code for fastdeploy.vision.faceid.contrib.adaface
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from ..... import FastDeployModel, ModelFormat
from ..... import c_lib_wrap as C
class AdaFacePreprocessor:
    def __init__(self):
        """Create a preprocessor for AdaFace Model
        """
        self._preprocessor = C.vision.faceid.AdaFacePreprocessor()
    def run(self, input_ims):
        """Preprocess input images for AdaFace Model
        :param: input_ims: (list of numpy.ndarray)The input image
        :return: list of FDTensor, include image, scale_factor, im_shape
        """
        return self._preprocessor.run(input_ims)
class AdaFacePostprocessor:
    def __init__(self):
        """Create a postprocessor for AdaFace Model
        """
        self._postprocessor = C.vision.faceid.AdaFacePostprocessor()
    def run(self, runtime_results):
        """Postprocess the runtime results for PaddleClas Model
        :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime
        :return: list of FaceRecognitionResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size)
        """
        return self._postprocessor.run(runtime_results)
    @property
    def l2_normalize(self):
        """
        confidence threshold for postprocessing, default is 0.5
        """
        return self._postprocessor.l2_normalize
[docs]class AdaFace(FastDeployModel):
    def __init__(self,
                 model_file,
                 params_file="",
                 runtime_option=None,
                 model_format=ModelFormat.ONNX):
        """Load a AdaFace model exported by PaddleClas.
        :param model_file: (str)Path of model file, e.g adaface/model.pdmodel
        :param params_file: (str)Path of parameters file, e.g adaface/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string
        :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU
        :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model
        """
        super(AdaFace, self).__init__(runtime_option)
        self._model = C.vision.faceid.AdaFace(
            model_file, params_file, self._runtime_option, model_format)
        assert self.initialized, "AdaFace model initialize failed."
[docs]    def predict(self, im):
        """Detect an input image
        :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format
        :return: DetectionResult
        """
        assert im is not None, "The input image data is None."
        return self._model.predict(im) 
[docs]    def batch_predict(self, images):
        """Detect a batch of input image list
        :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format
        :return list of DetectionResult
        """
        return self._model.batch_predict(images) 
    @property
    def preprocessor(self):
        """Get AdaFacePreprocessor object of the loaded model
        :return AdaFacePreprocessor
        """
        return self._model.preprocessor
    @property
    def postprocessor(self):
        """Get AdaFacePostprocessor object of the loaded model
        :return AdaFacePostprocessor
        """
        return self._model.postprocessor