Source code for fastdeploy.vision.detection.ppdet

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from typing import Union, List
import logging
from .... import FastDeployModel, ModelFormat
from .... import c_lib_wrap as C
from ...common import ProcessorManager


[docs]class PaddleDetPreprocessor(ProcessorManager): def __init__(self, config_file): """Create a preprocessor for PaddleDetection Model from configuration file :param config_file: (str)Path of configuration file, e.g ppyoloe/infer_cfg.yml """ self._manager = C.vision.detection.PaddleDetPreprocessor( config_file)
[docs] def disable_normalize(self): """ This function will disable normalize in preprocessing step. """ self._manager.disable_normalize()
[docs] def disable_permute(self): """ This function will disable hwc2chw in preprocessing step. """ self._manager.disable_permute()
class NMSOption: def __init__(self): self.nms_option = C.vision.detection.NMSOption() @property def background_label(self): return self.nms_option.background_label
[docs]class PaddleDetPostprocessor: def __init__(self): """Create a postprocessor for PaddleDetection Model """ self._postprocessor = C.vision.detection.PaddleDetPostprocessor()
[docs] def run(self, runtime_results): """Postprocess the runtime results for PaddleDetection Model :param: runtime_results: (list of FDTensor)The output FDTensor results from runtime :return: list of ClassifyResult(If the runtime_results is predict by batched samples, the length of this list equals to the batch size) """ return self._postprocessor.run(runtime_results)
def apply_nms(self): self._postprocessor.apply_nms()
[docs] def set_nms_option(self, nms_option=None): """This function will enable decode and nms in postprocess step. """ if nms_option is None: nms_option = NMSOption() self._postprocessor.set_nms_option(self, nms_option.nms_option)
[docs]class PPYOLOE(FastDeployModel): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PPYOLOE model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g ppyoloe/model.pdmodel :param params_file: (str)Path of parameters file, e.g ppyoloe/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) self._model = C.vision.detection.PPYOLOE( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PPYOLOE model initialize failed."
[docs] def predict(self, im): """Detect an input image :param im: (numpy.ndarray)The input image data, 3-D array with layout HWC, BGR format :return: DetectionResult """ assert im is not None, "The input image data is None." return self._model.predict(im)
[docs] def batch_predict(self, images): """Detect a batch of input image list :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return list of DetectionResult """ return self._model.batch_predict(images)
[docs] def clone(self): """Clone PPYOLOE object :return: a new PPYOLOE object """ class PPYOLOEClone(PPYOLOE): def __init__(self, model): self._model = model clone_model = PPYOLOEClone(self._model.clone()) return clone_model
@property def preprocessor(self): """Get PaddleDetPreprocessor object of the loaded model :return PaddleDetPreprocessor """ return self._model.preprocessor @property def postprocessor(self): """Get PaddleDetPostprocessor object of the loaded model :return PaddleDetPostprocessor """ return self._model.postprocessor
[docs]class PPYOLO(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PPYOLO model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g ppyolo/model.pdmodel :param params_file: (str)Path of parameters file, e.g ppyolo/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PPYOLO model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PPYOLO( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PPYOLO model initialize failed."
[docs] def clone(self): """Clone PPYOLO object :return: a new PPYOLO object """ class PPYOLOClone(PPYOLO): def __init__(self, model): self._model = model clone_model = PPYOLOClone(self._model.clone()) return clone_model
[docs]class PaddleYOLOX(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOX model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolox/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolox/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PaddleYOLOX model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PaddleYOLOX( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleYOLOX model initialize failed."
[docs] def clone(self): """Clone PaddleYOLOX object :return: a new PaddleYOLOX object """ class PaddleYOLOXClone(PaddleYOLOX): def __init__(self, model): self._model = model clone_model = PaddleYOLOXClone(self._model.clone()) return clone_model
[docs]class PicoDet(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PicoDet model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g picodet/model.pdmodel :param params_file: (str)Path of parameters file, e.g picodet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) self._model = C.vision.detection.PicoDet( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PicoDet model initialize failed."
[docs] def clone(self): """Clone PicoDet object :return: a new PicoDet object """ class PicoDetClone(PicoDet): def __init__(self, model): self._model = model clone_model = PicoDetClone(self._model.clone()) return clone_model
[docs]class FasterRCNN(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a FasterRCNN model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g fasterrcnn/model.pdmodel :param params_file: (str)Path of parameters file, e.g fasterrcnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "FasterRCNN model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.FasterRCNN( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "FasterRCNN model initialize failed."
[docs] def clone(self): """Clone FasterRCNN object :return: a new FasterRCNN object """ class FasterRCNNClone(FasterRCNN): def __init__(self, model): self._model = model clone_model = FasterRCNNClone(self._model.clone()) return clone_model
class YOLOv3(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOv3 model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolov3/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolov3/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "YOLOv3 model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.YOLOv3( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "YOLOv3 model initialize failed." def clone(self): """Clone YOLOv3 object :return: a new YOLOv3 object """ class YOLOv3Clone(YOLOv3): def __init__(self, model): self._model = model clone_model = YOLOv3Clone(self._model.clone()) return clone_model class SOLOv2(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a SOLOv2 model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g solov2/model.pdmodel :param params_file: (str)Path of parameters file, e.g solov2/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g solov2/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "SOLOv2 model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.SOLOv2( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "SOLOv2 model initialize failed." def clone(self): """Clone SOLOv2 object :return: a new SOLOv2 object """ class SOLOv2Clone(SOLOv2): def __init__(self, model): self._model = model clone_model = SOLOv2Clone(self._model.clone()) return clone_model
[docs]class MaskRCNN(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a MaskRCNN model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g fasterrcnn/model.pdmodel :param params_file: (str)Path of parameters file, e.g fasterrcnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "MaskRCNN model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.MaskRCNN( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "MaskRCNN model initialize failed."
[docs] def batch_predict(self, images): """Detect a batch of input image list, batch_predict is not supported for maskrcnn now. :param im: (list of numpy.ndarray) The input image list, each element is a 3-D array with layout HWC, BGR format :return list of DetectionResult """ raise Exception( "batch_predict is not supported for MaskRCNN model now.")
[docs] def clone(self): """Clone MaskRCNN object :return: a new MaskRCNN object """ class MaskRCNNClone(MaskRCNN): def __init__(self, model): self._model = model clone_model = MaskRCNNClone(self._model.clone()) return clone_model
class SSD(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a SSD model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g ssd/model.pdmodel :param params_file: (str)Path of parameters file, e.g ssd/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "SSD model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.SSD(model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "SSD model initialize failed." def clone(self): """Clone SSD object :return: a new SSD object """ class SSDClone(SSD): def __init__(self, model): self._model = model clone_model = SSDClone(self._model.clone()) return clone_model class PaddleYOLOv5(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOv5 model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolov5/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolov5/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PaddleYOLOv5 model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PaddleYOLOv5( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleYOLOv5 model initialize failed." class PaddleYOLOv6(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOv6 model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolov6/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolov6/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PaddleYOLOv6 model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PaddleYOLOv6( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleYOLOv6 model initialize failed." class PaddleYOLOv7(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOv7 model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolov7/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolov7/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PaddleYOLOv7 model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PaddleYOLOv7( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleYOLOv7 model initialize failed." class PaddleYOLOv8(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a YOLOv8 model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g yolov8/model.pdmodel :param params_file: (str)Path of parameters file, e.g yolov8/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g yolov8/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) self._model = C.vision.detection.PaddleYOLOv8( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PaddleYOLOv8 model initialize failed." class RTMDet(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a RTMDet model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g rtmdet/model.pdmodel :param params_file: (str)Path of parameters file, e.g rtmdet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "RTMDet model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.RTMDet( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "RTMDet model initialize failed." class CascadeRCNN(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a CascadeRCNN model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g cascadercnn/model.pdmodel :param params_file: (str)Path of parameters file, e.g cascadercnn/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "CascadeRCNN model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.CascadeRCNN( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "CascadeRCNN model initialize failed." class PSSDet(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PSSDet model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g pssdet/model.pdmodel :param params_file: (str)Path of parameters file, e.g pssdet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PSSDet model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PSSDet( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PSSDet model initialize failed." class RetinaNet(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a RetinaNet model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g retinanet/model.pdmodel :param params_file: (str)Path of parameters file, e.g retinanet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "RetinaNet model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.RetinaNet( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "RetinaNet model initialize failed." class PPYOLOESOD(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a PPYOLOESOD model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g ppyoloesod/model.pdmodel :param params_file: (str)Path of parameters file, e.g ppyoloesod/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "PPYOLOESOD model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.PPYOLOESOD( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "PPYOLOESOD model initialize failed." class FCOS(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a FCOS model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g fcos/model.pdmodel :param params_file: (str)Path of parameters file, e.g fcos/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "FCOS model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.FCOS( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "FCOS model initialize failed." class TTFNet(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a TTFNet model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g ttfnet/model.pdmodel :param params_file: (str)Path of parameters file, e.g ttfnet/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "TTFNet model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.TTFNet( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "TTFNet model initialize failed." class TOOD(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a TOOD model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g tood/model.pdmodel :param params_file: (str)Path of parameters file, e.g tood/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "TOOD model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.TOOD( model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "TOOD model initialize failed." class GFL(PPYOLOE): def __init__(self, model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE): """Load a GFL model exported by PaddleDetection. :param model_file: (str)Path of model file, e.g gfl/model.pdmodel :param params_file: (str)Path of parameters file, e.g gfl/model.pdiparams, if the model_fomat is ModelFormat.ONNX, this param will be ignored, can be set as empty string :param config_file: (str)Path of configuration file for deployment, e.g ppyoloe/infer_cfg.yml :param runtime_option: (fastdeploy.RuntimeOption)RuntimeOption for inference this model, if it's None, will use the default backend on CPU :param model_format: (fastdeploy.ModelForamt)Model format of the loaded model """ super(PPYOLOE, self).__init__(runtime_option) assert model_format == ModelFormat.PADDLE, "GFL model only support model format of ModelFormat.Paddle now." self._model = C.vision.detection.GFL(model_file, params_file, config_file, self._runtime_option, model_format) assert self.initialized, "GFL model initialize failed."