from __future__ import absolute_import
from ... import c_lib_wrap as C
[docs]class Processor():
def __init__(self):
self.processor = None
def __call__(self, mat):
"""call for processing input.
:param mat: The input data FDMat or FDMatBatch.
"""
self.processor(mat)
[docs]class ResizeByShort(Processor):
def __init__(self, target_size: int, interp=1, use_scale=True, max_hw=[]):
"""Create a ResizeByShort operation with the given parameters.
:param target_size: The target short size to resize the image
:param interp: Optionally, the interpolation mode for resizing image
:param use_scale: Optionally, whether to scale image
:param max_hw: Max spatial size which is used by ResizeByShort
"""
self.processor = C.vision.processors.ResizeByShort(target_size, interp,
use_scale, max_hw)
[docs]class CenterCrop(Processor):
def __init__(self, width, height):
"""Create a CenterCrop operation with the given parameters.
:param width: Desired width of the cropped image
:param height: Desired height of the cropped image
"""
self.processor = C.vision.processors.CenterCrop(width, height)
[docs]class Pad(Processor):
def __init__(self, top: int, bottom: int, left: int, right: int, value=[]):
"""Create a Pad operation with the given parameters.
:param top: The top padding
:param bottom: The bottom padding
:param left: The left padding
:param right: The right padding
:param value: the value that is used to pad on the input image
"""
self.processor = C.vision.processors.Pad(top, bottom, left, right,
value)
[docs]class NormalizeAndPermute(Processor):
def __init__(self,
mean=[],
std=[],
is_scale=True,
min=[],
max=[],
swap_rb=False):
"""Creae a Normalize and a Permute operation with the given parameters.
:param mean: A list containing the mean of each channel
:param std: A list containing the standard deviation of each channel
:param is_scale: Specifies if the image are being scaled or not
:param min: A list containing the minimum value of each channel
:param max: A list containing the maximum value of each channel
"""
self.processor = C.vision.processors.NormalizeAndPermute(
mean, std, is_scale, min, max, swap_rb)
[docs]class Cast(Processor):
def __init__(self, dtype="float"):
"""Creat a new cast opereaton with given dtype
:param dtype: Target dtype of the output
"""
self.processor = C.vision.processors.Cast(dtype)
[docs]class HWC2CHW(Processor):
def __init__(self):
"""Creat a new hwc2chw processor with default dtype.
:return An instance of processor `HWC2CHW`
"""
self.processor = C.vision.processors.HWC2CHW()
[docs]class Normalize(Processor):
def __init__(self, mean, std, is_scale=True, min=[], max=[],
swap_rb=False):
"""Creat a new normalize opereator with given paremeters.
:param mean: A list containing the mean of each channel
:param std: A list containing the standard deviation of each channel
:param is_scale: Specifies if the image are being scaled or not
:param min: A list containing the minimum value of each channel
:param max: A list containing the maximum value of each channel
"""
self.processor = C.vision.processors.Normalize(mean, std, is_scale,
min, max, swap_rb)
[docs]class PadToSize(Processor):
def __init__(self, width, height, value=[]):
"""Create a new PadToSize opereator with given parameters.
:param width: Desired width of the output image
:param height: Desired height of the output image
:param value: Values to pad with
"""
self.processor = C.vision.processors.PadToSize(width, height, value)
[docs]class Resize(Processor):
def __init__(self,
width,
height,
scale_w=-1.0,
scale_h=-1.0,
interp=1,
use_scale=False):
"""Create a Resize operation with the given parameters.
:param width: Desired width of the output image
:param height: Desired height of the output image
:param scale_w: Scales the width in x-direction
:param scale_h: Scales the height in y-direction
:param interp: Optionally, the interpolation mode for resizing image
:param use_scale: Optionally, whether to scale image
"""
self.processor = C.vision.processors.Resize(width, height, scale_w,
scale_h, interp, use_scale)
[docs]class StridePad(Processor):
def __init__(self, stride, value=[]):
"""Create a StridePad processor with given parameters.
:param stride: Stride of the processor
:param value: Values to pad with
"""
self.processor = C.vision.processors.StridePad(stride, value)