FastDeploy  latest
Fast & Easy to Deploy!
Public Member Functions | List of all members
fastdeploy::vision::facealign::PIPNet Class Reference

PIPNet model object used when to load a PIPNet model exported by PIPNet. More...

#include <pipnet.h>

Inheritance diagram for fastdeploy::vision::facealign::PIPNet:
Inheritance graph
[legend]
Collaboration diagram for fastdeploy::vision::facealign::PIPNet:
Collaboration graph
[legend]

Public Member Functions

 PIPNet (const std::string &model_file, const std::string &params_file="", const RuntimeOption &custom_option=RuntimeOption(), const ModelFormat &model_format=ModelFormat::ONNX)
 Set path of model file and the configuration of runtime. More...
 
std::string ModelName () const
 Get model's name.
 
virtual bool Predict (cv::Mat *im, FaceAlignmentResult *result)
 Predict the face detection result for an input image. More...
 
int GetNumLandmarks ()
 Get the number of landmakrs. More...
 
std::vector< float > GetMeanVals ()
 Get the mean values for normalization. More...
 
std::vector< float > GetStdVals ()
 Get the std values for normalization. More...
 
std::vector< int > GetSize ()
 Get the input size of image. More...
 
void SetNumLandmarks (const int &num_landmarks)
 Set the number of landmarks. More...
 
void SetMeanVals (const std::vector< float > &mean_vals)
 Set the mean values for normalization. More...
 
void SetStdVals (const std::vector< float > &std_vals)
 Set the std values for normalization. More...
 
void SetSize (const std::vector< int > &size)
 Set the input size of image. More...
 
- Public Member Functions inherited from fastdeploy::FastDeployModel
virtual bool Infer (std::vector< FDTensor > &input_tensors, std::vector< FDTensor > *output_tensors)
 Inference the model by the runtime. This interface is included in the Predict() function, so we don't call Infer() directly in most common situation.
 
virtual bool Infer ()
 Inference the model by the runtime. This interface is using class member reused_input_tensors_ to do inference and writing results to reused_output_tensors_.
 
virtual int NumInputsOfRuntime ()
 Get number of inputs for this model.
 
virtual int NumOutputsOfRuntime ()
 Get number of outputs for this model.
 
virtual TensorInfo InputInfoOfRuntime (int index)
 Get input information for this model.
 
virtual TensorInfo OutputInfoOfRuntime (int index)
 Get output information for this model.
 
virtual bool Initialized () const
 Check if the model is initialized successfully.
 
virtual void EnableRecordTimeOfRuntime ()
 This is a debug interface, used to record the time of runtime (backend + h2d + d2h) More...
 
virtual void DisableRecordTimeOfRuntime ()
 Disable to record the time of runtime, see EnableRecordTimeOfRuntime() for more detail.
 
virtual std::map< std::string, float > PrintStatisInfoOfRuntime ()
 Print the statistic information of runtime in the console, see function EnableRecordTimeOfRuntime() for more detail.
 
virtual bool EnabledRecordTimeOfRuntime ()
 Check if the EnableRecordTimeOfRuntime() method is enabled.
 
virtual double GetProfileTime ()
 Get profile time of Runtime after the profile process is done.
 
virtual void ReleaseReusedBuffer ()
 Release reused input/output buffers.
 

Additional Inherited Members

- Public Attributes inherited from fastdeploy::FastDeployModel
std::vector< Backendvalid_cpu_backends = {Backend::ORT}
 Model's valid cpu backends. This member defined all the cpu backends have successfully tested for the model.
 
std::vector< Backendvalid_gpu_backends = {Backend::ORT}
 
std::vector< Backendvalid_ipu_backends = {}
 
std::vector< Backendvalid_timvx_backends = {}
 
std::vector< Backendvalid_directml_backends = {}
 
std::vector< Backendvalid_ascend_backends = {}
 
std::vector< Backendvalid_kunlunxin_backends = {}
 
std::vector< Backendvalid_rknpu_backends = {}
 
std::vector< Backendvalid_sophgonpu_backends = {}
 

Detailed Description

PIPNet model object used when to load a PIPNet model exported by PIPNet.

Constructor & Destructor Documentation

◆ PIPNet()

fastdeploy::vision::facealign::PIPNet::PIPNet ( const std::string &  model_file,
const std::string &  params_file = "",
const RuntimeOption custom_option = RuntimeOption(),
const ModelFormat model_format = ModelFormat::ONNX 
)

Set path of model file and the configuration of runtime.

Parameters
[in]model_filePath of model file, e.g ./pipnet.onnx
[in]params_filePath of parameter file, e.g ppyoloe/model.pdiparams, if the model format is ONNX, this parameter will be ignored
[in]custom_optionRuntimeOption for inference, the default will use cpu, and choose the backend defined in "valid_cpu_backends"
[in]model_formatModel format of the loaded model, default is ONNX format

Member Function Documentation

◆ GetMeanVals()

std::vector<float> fastdeploy::vision::facealign::PIPNet::GetMeanVals ( )
inline

Get the mean values for normalization.

Returns
Vector of float values, default mean_vals = {0.485f, 0.456f, 0.406f}

◆ GetNumLandmarks()

int fastdeploy::vision::facealign::PIPNet::GetNumLandmarks ( )
inline

Get the number of landmakrs.

Returns
Integer type, default num_landmarks = 19

◆ GetSize()

std::vector<int> fastdeploy::vision::facealign::PIPNet::GetSize ( )
inline

Get the input size of image.

Returns
Vector of int values, default {256, 256}

◆ GetStdVals()

std::vector<float> fastdeploy::vision::facealign::PIPNet::GetStdVals ( )
inline

Get the std values for normalization.

Returns
Vector of float values, default std_vals = {0.229f, 0.224f, 0.225f}

◆ Predict()

bool fastdeploy::vision::facealign::PIPNet::Predict ( cv::Mat *  im,
FaceAlignmentResult result 
)
virtual

Predict the face detection result for an input image.

Parameters
[in]imThe input image data, comes from cv::imread(), is a 3-D array with layout HWC, BGR format
[in]resultThe output face detection result will be writen to this structure
Returns
true if the prediction successed, otherwise false

◆ SetMeanVals()

void fastdeploy::vision::facealign::PIPNet::SetMeanVals ( const std::vector< float > &  mean_vals)
inline

Set the mean values for normalization.

Parameters
[in]mean_valsVector of float values whose length is equal to 3

◆ SetNumLandmarks()

void fastdeploy::vision::facealign::PIPNet::SetNumLandmarks ( const int &  num_landmarks)

Set the number of landmarks.

Parameters
[in]num_landmarksInteger value which represents number of landmarks

◆ SetSize()

void fastdeploy::vision::facealign::PIPNet::SetSize ( const std::vector< int > &  size)
inline

Set the input size of image.

Parameters
[in]sizeVector of int values which represents {width, height} of image

◆ SetStdVals()

void fastdeploy::vision::facealign::PIPNet::SetStdVals ( const std::vector< float > &  std_vals)
inline

Set the std values for normalization.

Parameters
[in]std_valsVector of float values whose length is equal to 3

The documentation for this class was generated from the following files: