Go to the source code of this file.
◆ FD_C_PaddleClasModelWrapper
◆ FD_C_CreatePaddleClasModelWrapper()
Create a new FD_C_PaddleClasModelWrapper object.
- Parameters
-
[in] | model_file | Path of model file, e.g resnet/model.pdmodel |
[in] | params_file | Path of parameter file, e.g resnet/model.pdiparams, if the model format is ONNX, this parameter will be ignored |
[in] | config_file | Path of configuration file for deployment, e.g resnet/infer_cfg.yml |
[in] | fd_c_runtime_option_wrapper | RuntimeOption for inference, the default will use cpu, and choose the backend defined in valid_cpu_backends |
[in] | model_format | Model format of the loaded model, default is Paddle format |
- Returns
- Return a pointer to FD_C_PaddleClasModelWrapper object
◆ FD_C_DestroyPaddleClasModelWrapper()
Destroy a FD_C_PaddleClasModelWrapper object.
- Parameters
-
[in] | fd_c_paddleclas_model_wrapper | pointer to FD_C_PaddleClasModelWrapper object |
◆ FD_C_PaddleClasModelWrapperBatchPredict()
Predict the classification results for a batch of input images.
- Parameters
-
[in] | fd_c_paddleclas_model_wrapper | pointer to FD_C_PaddleClasModelWrapper object |
[in] | imgs | The input image list, each element comes from cv::imread() |
[in] | results | The output classification result list |
- Returns
- true if the prediction successed, otherwise false
◆ FD_C_PaddleClasModelWrapperInitialized()
Check if the model is initialized successfully.
- Parameters
-
[in] | fd_c_paddleclas_model_wrapper | pointer to FD_C_PaddleClasModelWrapper object |
- Returns
- Return a bool of value true if initialized successfully
◆ FD_C_PaddleClasModelWrapperPredict()
Predict the classification result for an input image.
- Parameters
-
[in] | fd_c_paddleclas_model_wrapper | pointer to FD_C_PaddleClasModelWrapper object |
[in] | img | pointer to cv::Mat image |
[in] | fd_c_classify_result | pointer to FD_C_ClassifyResult object, which stores the result. |