FastDeploy  latest
Fast & Easy to Deploy!
eigen.h
1 // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #pragma once
16 
17 #include <algorithm>
18 #include <memory>
19 #include <vector>
20 #include "fastdeploy/core/fd_tensor.h"
21 #include "fastdeploy/utils/axis_utils.h"
22 #include "unsupported/Eigen/CXX11/Tensor"
23 
24 namespace fastdeploy {
25 namespace function {
26 // EigenDim converts shape into Eigen::DSizes.
27 template <int D>
28 struct EigenDim {
29  using Type = Eigen::DSizes<Eigen::DenseIndex, D>;
30 
31  static Type From(const std::vector<int64_t>& dims) {
32  Type ret;
33  for (int64_t d = 0; d < dims.size(); d++) {
34  ret[d] = dims[d];
35  }
36  return ret;
37  }
38 };
39 
40 // Interpret FDTensor as EigenTensor and EigenConstTensor.
41 template <typename T, size_t D, int MajorType = Eigen::RowMajor,
42  typename IndexType = Eigen::DenseIndex>
43 struct EigenTensor {
44  using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>;
45 
46  using ConstType =
47  Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>;
48 
49  static Type From(FDTensor& tensor,
50  const std::vector<int64_t>& dims) { // NOLINT
51  return Type(reinterpret_cast<T*>(tensor.Data()), EigenDim<D>::From(dims));
52  }
53 
54  static Type From(FDTensor& tensor) { // NOLINT
55  return From(tensor, tensor.shape);
56  } // NOLINT
57 
58  static ConstType From(const FDTensor& tensor,
59  const std::vector<int64_t>& dims) {
60  return ConstType(reinterpret_cast<const T*>(tensor.Data()),
61  EigenDim<D>::From(dims));
62  }
63 
64  static ConstType From(const FDTensor& tensor) {
65  return From(tensor, tensor.shape);
66  }
67 };
68 
69 template <typename T, int MajorType = Eigen::RowMajor,
70  typename IndexType = Eigen::DenseIndex>
71 struct EigenScalar {
72  // Scalar tensor (implemented as a rank-0 tensor) of scalar type T.
73  using Type = Eigen::TensorMap<
74  Eigen::TensorFixedSize<T, Eigen::Sizes<>, MajorType, IndexType>>;
75  using ConstType = Eigen::TensorMap<
76  Eigen::TensorFixedSize<const T, Eigen::Sizes<>, MajorType, IndexType>>;
77 
78  static Type From(FDTensor& tensor) {
79  return Type(reinterpret_cast<T*>(tensor.Data()));
80  } // NOLINT
81 
82  static ConstType From(const FDTensor& tensor) {
83  return ConstType(reinterpret_cast<const T*>(tensor.Data()));
84  }
85 };
86 
87 template <typename T, int MajorType = Eigen::RowMajor,
88  typename IndexType = Eigen::DenseIndex>
89 struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> {
90  // Flatten reshapes a Tensor into an EigenVector.
91  static typename EigenVector::Type Flatten(FDTensor& tensor) { // NOLINT
92  return EigenVector::From(tensor, {tensor.Numel()});
93  }
94 
95  static typename EigenVector::ConstType Flatten(
96  const FDTensor& tensor) { // NOLINT
97  return EigenVector::From(tensor, {tensor.Numel()});
98  }
99 };
100 
101 template <typename T, int MajorType = Eigen::RowMajor,
102  typename IndexType = Eigen::DenseIndex>
103 struct EigenMatrix : public EigenTensor<T, 2, MajorType, IndexType> {
104  static typename EigenMatrix::Type Reshape(FDTensor& tensor, // NOLINT
105  int num_col_dims) {
106  int rank = tensor.shape.size();
107  FDASSERT((num_col_dims > 0 && num_col_dims < rank),
108  "Input dimension number(num_col_dims) must be between 0 and %d, "
109  "but received number is %d.",
110  rank, num_col_dims);
111  const int n = SizeToAxis(num_col_dims, tensor.shape);
112  const int d = SizeFromAxis(num_col_dims, tensor.shape);
113  return EigenMatrix::From(tensor, {n, d});
114  }
115 
116  static typename EigenMatrix::ConstType Reshape(const FDTensor& tensor,
117  int num_col_dims) {
118  int rank = tensor.shape.size();
119  FDASSERT((num_col_dims > 0 && num_col_dims < rank),
120  "Input dimension number(num_col_dims) must be between 0 and %d, "
121  "but received number is %d.",
122  rank, num_col_dims);
123  const int n = SizeToAxis(num_col_dims, tensor.shape);
124  const int d = SizeFromAxis(num_col_dims, tensor.shape);
125  return EigenMatrix::From(tensor, {n, d});
126  }
127 };
128 
129 class EigenDeviceWrapper {
130  public:
131  static std::shared_ptr<EigenDeviceWrapper> GetInstance();
132  const Eigen::DefaultDevice* GetDevice() const;
133 
134  private:
135  Eigen::DefaultDevice device_;
136  static std::shared_ptr<EigenDeviceWrapper> instance_;
137 };
138 
139 } // namespace function
140 } // namespace fastdeploy
All C++ FastDeploy APIs are defined inside this namespace.
Definition: option.h:16